Chloride transport by the rabbit cortical collecting duct: dependence on H,K-ATPase.

نویسندگان

  • X Zhou
  • S L Xia
  • C S Wingo
چکیده

The rabbit cortical collecting duct (CCD) exhibits the capacity for active chloride absorption when basolateral Na-K-ATPase is inhibited by ouabain. The present studies examine the contribution of H,K-ATPase to this ouabain-insensitive Cl absorption and to related ion fluxes. Rabbits were fed a KCl-rich diet with no measurable Na for 4 to 13 d before isolation of the CCD for microperfusion. Application of peritubular ouabain (0.1 mM) significantly increased (P < 0.001) net luminal absorptive chloride flux (J(N)Cl) without an effect on lumen-to-bath isotopic 36Cl flux (J(lb)Cl). The H,K-ATPase inhibitor Sch 28080 (1 to 10 microM) abolished ouabain-insensitive J(N)Cl, but transepithelial voltage (V(T)) was not significantly affected. The contribution of H,K-ATPase activity on active Cl flux (J(A)Cl) and passive Cl flux (J(P)Cl) was also assessed. Ouabain significantly increased J(A)Cl and Sch 28080 inhibited J(A)Cl, but J(P)Cl was not affected by Sch 28080. To assess the contribution of changes in net bicarbonate flux (JtCO2) to changes in J(N)Cl, JtCO2 was measured under identical conditions as for J(N)Cl. Ouabain significantly increased JtCO2, and this ouabain-insensitive bicarbonate flux was inhibited by Sch 28080 without significantly affecting V(T). To assess the possibility that the CCD may possess mechanisms for neutral salt absorption, lumen-to-bath 86Rb efflux (K(Rb)), and 22Na efflux (K(Na)) were also measured. Ouabain significantly increased K(Rb), and Sch 28080 inhibited this ouabain-insensitive K(Rb). Furthermore, Sch 28080 and A80915a (a structurally distinct H,K-ATPase inhibitor) significantly inhibited K(Na) in the presence of 1 mM luminal amiloride. These observations suggest that, in addition to potassium, sodium can be transported via the H,K-ATPase. Although the CCD contains more than one cell population, the data could be fitted very well to the function of the B-type intercalated cell. A cell model is proposed for the hypothesis that ouabain-insensitive chloride absorption is mediated by the parallel operation of an apical H,K-ATPase with an apical Cl-HCO3 exchanger and that the H,K-ATPase can function, under certain conditions, as a mechanism of Na absorption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ammonia on bicarbonate transport in the cortical collecting duct.

Both acidosis and hypokalemia stimulate renal ammoniagenesis, and both regulate urinary proton and potassium excretion. We hypothesized that ammonia might play an important role in this processing by stimulating H(+)-K(+)-ATPase-mediated ion transport. Rabbit cortical collecting ducts (CCD) were studied using in vitro microperfusion, bicarbonate reabsorption was measured using microcalorimetry,...

متن کامل

H-K-ATPase in the RCCT-28A rabbit cortical collecting duct cell line.

In the present study, we demonstrate that the rabbit cortical collecting duct cell line RCCT-28A possesses three distinct H-K-ATPase catalytic subunits (HKα). Intracellular measurements of RCCT-28A cells using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) indicated that the mechanism accounting for recovery from an acid load exhibited both K+ dependence and sens...

متن کامل

Impaired acid secretion in cortical collecting duct intercalated cells from H-K-ATPase-deficient mice: role of HKalpha isoforms.

Two classes of H pumps, H-K-ATPase and H-ATPase, contribute to luminal acidification and HCO(3) transport in the collecting duct (CD). At least two H-K-ATPase alpha-subunits are expressed in the CD: HKalpha(1) and HKalpha(2). Both exhibit K dependence but have different inhibitor sensitivities. The HKalpha(1) H-K-ATPase is Sch-28080 sensitive, whereas the pharmacological profile of the HKalpha(...

متن کامل

Detection and localization of H+-K+-ATPase isoforms in human kidney.

An H+-K+-ATPase contributes to hydrogen secretion and potassium reabsorption by the rat and rabbit collecting ducts. Transport of these ions appears to be accomplished by one or both of two isoforms of the H+-K+-ATPase, HKalpha(1) and HKalpha(2,) because both isoforms are found in the collecting ducts and transport of hydrogen and potassium is attenuated by exposure to inhibitors of these trans...

متن کامل

Immunohistochemical localization of H-K-ATPase α2c-subunit in rabbit kidney

Verlander, Jill W., Robin M. Moudy, W. Grady Campbell, Brian D. Cain, and Charles S. Wingo. Immunohistochemical localization of H-K-ATPase a2c-subunit in rabbit kidney. Am J Physiol Renal Physiol 281: F357–F365, 2001.— The rabbit kidney possesses mRNA for the H-K-ATPase a1-subunit (HKa1) and two splice variants of the H-KATPase a2-subunit (HKa2). The purpose of this study was to determine the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 1998